Core Lab Stock Info Loading...

US CN RU
  • Email Us
  • Send us a request
  • Call Us
  • U.S. Headquarters
  • 4616 North Mingo
  • Tulsa, OK 74117 USA
  • Phone: 1-918-834-2337
<< Back

Advanced Rock Properties

Centrifuge Over Burden System


Centrifuge Over Burden System

With the same DC drive as the J6-HC, the J6-MC offers the same performance advantages, plus the added precision, convenience and separation efficiency provided by microprocessor control.

The smooth, rugged drive of the J6-Hc and the J6-MC minimizes downtime because its belt drive allows it to be positioned near the front of the instrument, where it is readily accessible for periodic brush changes. Throughput is maximized due to its high-torque performance and its favorable drive ratio, giving it a significant mechanical advantage over the rotors it spins.

This conversion allows a commercially available J6 Beckman centrifuge originally configured for room conditions centrifuge core displacement experiments to be converted for use under overburden pressure conditions. The hydrostatic coreholders are provided in sets of four and individually balanced to the spindle and trunion present in the centrifuge. It is recommended that two sets of four be purchased to allow for sample preparation of four samples whilst another set is being run in the centrifuge. The core holder assembly places the sample between the metal end pieces within an elastic sleeve, which acts as a barrier from the fluid, used to exert the hydrostatic confining pressure. The system accommodates confining pressure of 50 psi to a maximum of 4000 psi with temperatures ranging from ambient to 160 °F and a maximum of 3,500 RPMs. (centrifuge model selected controls maximum temperature range).



Low heat output
Because of the belt-drive motor design, motor load is minimized, providing low heat output (less than 6,500 Btu/h).

Precise control over run parameters
The microprocessor control system provides you with parameters that are within ±20 rpm of set speed; ±1º C of set temperature after dynamic calibration (no more freezing of samples due to poor temperature control!).

Easy programming
You can quickly and easily program and recall up to 10 run protocols, virtually eliminating erroneous settings when doing repetitive runs.

Higher-quality separations
Three dual-ramp settings provide controlled accel/decel between 0 and 500 rpm, protecting gradients from abrupt speed transitions that might damage the separation. A unique rotor identification system adjusts temperatures to compensate for each individual rotor's windage

Safety
A rotor recognition/overspeed protection system prevents setting speeds that are higher than the maximum speed of the rotor